Ruolo dell'efficienza nella previsione del default aziendale

Domenico Piatti, Peter Cincinelli, Davide Castellani


This study investigates the role of technical efficiency in predicting the probability of default of a sample of Italian SMEs in the period 2007-2010. This specific period is of particular interest because it is centered on the beginning of the Global Financial Crisis. We argue that technical efficiency allows for a forward-looking perspective and can contribute to shed more light on the reasons behind the default of many Italian SMEs in the particular period considered. The technical efficiency is estimated with a stochastic frontier approach and the efficiency ratio is used as independent variable, along with several financial ratios. Consistently with the literature, the results suggest that efficiency is a good predictor when the financial ratios are also considered.


(technical efficiency; business failure prediction model; financial ratios; principal component analysis; stochastic frontier).

Full Text:

PDF (Italiano)


Altman, E. (1968). Financial ratios, discriminant analysis and prediction of corporate bankruptcy. Journal of Finance, 22, 589-610.

Altman, E., R.G. Haldeman & P. Narayanan (1977). Zeta analysis. Journal of Banking and Finance, 1, 29-54.

Altman, E., R.B. Avery, R.A. Eisenbeis & J.F. Jr. Sinkey (1981). Applications of Classification Procedures in Banking and Finance. Greenwich, JAI Press.

Altman, E., G. Marco & F. Varetto (1994). Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance, 18, 505-529.

Altman, E.I., & G. Sabato (2007). Modelling credit risk for SMEs: Evidence from the U.S. market. Abacus, 43, 332-357.

Altman, E., G. Sabato & N. Wilson (2008). The Value of Qualitative Information in SME Risk Management. Working Paper.

Appetiti, S. (1984). Identifying unsound firms in Italy. An attempt to use trend variables. Journal of Banking and Finance, 8, 269-279.

Argenti, J. (1986). Predicting Corporate Failure. Accountancy, 97, 157-158.

BANCA D’ITALIA (October, 2008). Bollettino Economico, N. 54.

Battese, G. E. & T.J. Coelli (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of econometrics, 38(3), 387-399.

Battese, G. E., & T.J. Coelli (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical economics, 20(2), 325-332.

Beaver, W. (1966). Financial ratios as predictors of failure. Supplement to Journal of Accounting Research, 5, 71-127.

Becchetti, L., & J. Sierra (2003). Bankruptcy risk and productive efficiency in manufacturing firms. Journal of Banking and Finance, 27, 2099-2120.

Bellovary, J., D.E. Giacomino & M. Akers (2007). A review of Bankruptcy Prediction Studies: 1930 to Present. Journal of Financial Education, 33, 56-95.

Bisogno M. (2012). The Accessibility of the Italian Bankruptcy Procedures: An Empirical Analysis. Eurasian Business Review, 2(2), 1-24.

Blochwitz, S. & J. Eigermann (2000). Unternehmensbeurteilung durch Diskriminanzanalyse mit qualiativen Merkmalen. Zeitschrift für betriebswirtschaftliche Forschung, 52, 58-73.

Bureau of Business Research (1930). A Test Analysis of Unsuccessful Industrial Companies. Bulletin N. 31. University of Illinois Press. Urbana.

Brunner, A., J.P. Krahnen & M. Weber (2000). Information production in credit relationships: on the role of internal ratings in commercial banking. Working Paper N. 2000/10,Center for Financial Studies, Frankfurt/Main.

Cameron, C.A. & P.K. Trivedi (2010). Microeconometrics Using Stata. College Station: Stata Press Publication.

CENSIS, (2008), Rapporto sulla situazione sociale del Paese 2008, FrancoAngeli, Roma.

Charitou, A., E. Neophytou & C. Charalambous (2004). Predicting Corporate Failure: Empirical Evidence for the UK. European Accounting Review, 13(3), 465-497.

Chen, Y., R.J. Huang & J. Tsai (2013). Soft Information and Small Business Lending. Journal of Financial Services Research, 1-19.

Chowdhury, S. & J. Lang (1993). Crisis, decline and turnaround: a test of competing hypotheses for short-term performance improvement in small firms. Journal of Small Business Management, 31(4), 8-17.

Chudson, W. (1945). The Pattern of Corporate Financial Structure. National Bureau of Economic Research: New York.

Cornée, S. (2013). The Relevance of Soft Information for Predicting Small Business Credit Default: Evidence from a Social Bank. Working Paper, University of Rennes.

Cosma, S. (2002). Il rapport banca-impresa: le variabili relazionali e comportamentali nella valutazione del rischio di credito, Giappichelli, Torino.

Crutzen, N. (2010). Essay on the prevention of small business failure: taxonomy and validation of five explanatory business failure patterns (EBFPs). Académie Universitaire Wallonie, HEC Ecole de Gestion de l’Université de Liège.

Daubie, M. & N. Meskens (2001). Bankruptcy Prediction: Literature Survey of the Last Ten Years. Belgian Journal of Operations Research, Statistics and Computer Science, 41, 43-58.

Deakin, E. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179.

Edmister, R.O. (1972). An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction. Journal of Financial and Quantitative Analysis, 7, 1477-1493.

Everett, J. & J. Watson (1998). Small business failure and external risk factors. Small Business Economics, 11, 371-390.

Fernández-Castro, A. (1988). A Spanish model for credit risk classification. Studies in Banking and Finance, 7, 115-125.

FitzPatrick, P. (1932). A Comparison of ratios of successful industrial enterprise with those of failed companies. The Certified Public Accountant: 598-605, 656-662, 727-731.

Frydman, H., E. Altman & D. Kao (1985). Introducing recursive partitioning for financial classification: The case of financial distress. Journal of Finance, 40(1), 269-291.

Fu, V. (1998). Estimating generalized ordered logit models. Stata Technical Bulletin, 44, 27-30.

Gentry, J.A., P. Newbold & D.T. Whitford (1985). Classifying bankruptcy firms with funds flow components. Journal of Accounting Research, 23(1), 146-160.

Gentry, J.A., P. Newbold & D.T. Whitford (1987). Funds flow components, financial ratios and bankruptcy. Journal of Business Finance and Accounting, 14(4), 595-606.

Giardino, R., A. Grasso & F. Pattarin (2010). Rischio di insolvenza e congiuntura economica nell’industria della provincial di Modena, in C. Bisoni, Finanza e credito per le imprese del territorio, (Bologna, Il Mulino).

Gibilaro, L. & D. Piatti (2012). Il ruolo delle variabili hard finanziarie e non finanziarie nella Business Failure Prediction. Sinergie, Rapporti di Ricerca, 36, 135-184.

Gilbert, L.R., K. Menon & K.B. Schwartz (1990). Predicting bankruptcy for firms in financial distress. Journal of Business Finance, 17, 161-171.

Gilson, A.C. & M.R. Vetsuypens (1993). CEO compensations in financially distressed firm: An empirical analysis. Journal of Finance, 48, 425-458.

Godbillon-Camus, B. & C. Godlewski (2005). Credit risk management in banks: Hard information, soft Information and manipulation. Munich Personal RePEc Archive, Paper N. 1873, posted 07, from

Godfrey, M.D. (2009). The TANH transformation. Information Systems Laboratory, Stanford University.

Gombola, M., M. Haskins, J. Ketz & D. Williams (1987). Cash flow in bankruptcy predictions. Financial Management, 16(4), 55-65.

Grunert, J., L. Norden & M. Weber (2005). The role of non-financial factors in internal credit ratings. Journal of Banking and Finance, 29, 509-531.

Guilhot, B. (2000). Défaillance d’entreprise: Soixante-dix ans d’analyses théoriques et empiriques. Revue Française de Gestion, 52-67.

Günther, T. & M. Grüning (2000). Einsatz von Insolvenzprognoseverfahren bei der Kreditwürdigkeitsprü im Firmenkundenbereich. Die Betriebswirtschaft, 60, 39-59.

Hesselmann, S. (1995). Insolvenzprognose mit Hilfe qualitative Faktoren. Aachen.

Hickman, W.C. (1957). Corporate Bond Quality and Investment Performance. National Bureau of Economic: New York.

Hwang, R. C., J.S. Siao, H. Chung & C.K. Chu (2011). Assessing bankruptcy prediction models via information content of technical inefficiency. Journal of Productivity Analysis, 36(3), 263-273.

Iazzolino, G., M. Bruni & P. Beraldi (2013). Using DEA and financial ratings for credit risk evaluation: an empirical analysis. Applied Economics Letters, 20(14), 1310-1317.

Izan, H. (1984). Corporate distress in Australia. Journal of Banking and Finance, 8, 303-320.

Jackendoff, N. (1962). A Study of Published Industry Financial and Operating Ratios. Bureau of Economic and Business Research. Philadelphia: Temple University.

Johnsen, T. & R.W. Melicher (1994). Predicting corporate bankruptcy and financial distress: information value added by multinomial logit models. Journal of Economics and Business, 46, 269-286.

Kahya, E. & Theodossiou P. (1999). Predicting corporate financial distress: A time series CUSUM methodology. Review of Quantitative Finance and Accounting, 6, 131-164.

Keasey, K. & R. Watson (1987). Non-financial symptoms and the prediction of small company failure: A test or Argenti’s hypotheses. Journal of Business Finance and Accounting, 14, 335-354.

Koenig, G. (1985). Entreprises en difficultés: des symptoms aux remèdes. Revue Française de Gestion, 84-92.

Kumbhakar, S. C. & C.K. Lovell (2000). Stochastic frontier analysis. Cambridge University Press.

Laitinen, E.K. (1991). Financial ratios and different failure processes. Journal of Business, Finance and Accounting, 649-673.

Lehamann, B. (2003). Is It Worth the While? The Relevance of Qualitative Information in Credit Rating. Working Paper.

Levitan, A. & J. Knoblett (1985). Indicators of exceptions to the going concern assumption. Auditing: A Journal of Practice and Theory, 5(1), 26-39.

Li, S. & S. Wang (2014). A financial early warning logit model and its efficiency verification approach. Knowledge-Based Systems, http:77dx.doi.org710.10167j,knosys.2014.03.017.

Lin, F.D, & E. Chen (2011). Financial ratio selection for business crisis prediction. Expert Systems with Application, 38(12), 15094-15102.

Lo, A.W. (1986). Logit versus discriminant analysis. A specification test and applications to corporate bankruptcies. Journal of Econometrics, 31, 151-178.

Martin, D. (1977). Early Warning of bank failure: A logit regression approach. Journal of Banking and Finance, 1, 249-276.

Mas-Colell, A., M.D. Whinston & J.R. Green (1995). Microeconomic Theory. Oxford University Press.

Merwin, C. (1942). Financing small corporations in five manufacturing industries 1926-1936. National Bureau of Economic Research: New York.

Ohlson, J. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.

Pederzoli, C. & C. Torricelli (2010). A parsimonious default predictions model for Italian SMEs. Banks and Banks Systems, 5(4), 5-9.

Petersen, M.A. (2004). Information: Hard and Soft, Mimeo.

Piatti, D. (2012). Il ruolo dei flussi di cassa nella valutazione del merito di credito, Sestante Edizioni-Bergamo University Press, Bergamo.

Piatti, D. (2014). Operating Cash Flow and Creditworthiness Assessment. Accademy of Accounting and Financial Studies Journal, 18(2).

Pindado, J., L.Rodriguez, & C. Della Torre (2008). Estimating financial distress likelihood. Journal of Business Research, 61, 995-1003.

Psillaki M., Tsolas I.E. & Margaritis D. (2010). Evaluation of credit risk based on firm performance. European Journal of Operational Research, 201, 873-881.

Pusnik, K. & M. Tajnikar (2008). Technical and Cost Efficiency as Determinants of Business Failures of Small Firms. Eastern European Economics, 46(1), 43-62.

Putnam R.D. (1993). Making Democracy Work, Princeton University Press.

Raja, A., M. Nosworthy & D. Goureia (1980). Diagnosis of Financial Health by Cash Flow Analysis. Working Papers, London Business School.

Resti, A. (1997). “Evaluating the Cost-Efficiency of the Italian Banking System: What Can Be Learned from the Joint Application of Parametric and Non-Parametric Techniques. Journal of Banking and Finance, 21(2), 221-250.

Retzlaff-Roberts, D. & R. Puelz (1996). Classification in automobile insurance using a DEA and discriminant analysis hybrid. Journal of Productivity Analysis, 7(4), 417-427.

Saeed, M. & M. Izzeldin (2014). Examining the relationship between default risk and efficiency in Islamic and conventional banks. Journal of Economic Behavior & Organization.

Serrano-Cinca, C., & B. Gutierrez-Nieto (2013). Partial Least Square Discriminant Analysis for bakruptcy prediction. Decision Support Systems, 54, 1245-1255.

Sharma, S. & V. Mahajan (1980). Early warning indicators of business failure. Journal of Marketing, 44(4), 80-89.

Sinkey, J.jr. (1975). A multivariate statistical analysis of the characteristics of problem banks. Journal of Finance, 30(1), 21-36.

Skogsvik, K. (1990). Current cost accounting ratios as predictors of business failure: The Swedish case. Journal of Business Finance & Accounting, 17, 137-160.

Smith, R. & A. Winakor (1935). Changes in Financial Structure of Unsuccessful Industrial Corporations. Bureau of Business Research, 51. Urbana: University of Illinois Press.

Styrin, K. (2005). What explains differences in efficiency across Russian banks?. Economics Education and Research Consortium.

Swaminathan, A. (1996). Environmental conditions at founding and organizational mortality: a trial by-fire model. The Academy of Management Journal, 39(5), 1350-1377.

Taffler, R.J. & H. Tisshaw (1977). Going, Going Going – Four Factors Which Predict. Accountancy, 88(1083), 50-54.

Tinoco, M.H. & N. Wilson (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial, 30, 394-419.

Trestini S. (2006). Un modello di frontiera stocastica per la valutazione dell’efficienza tecnica. Una applicazione agli allevamenti bovini da carne del Veneto. Rivista di Economia Agraria, 3, 315-338.

Unal, T. (1988). An early warning model for predicting firm failure and bankruptcy. Studies in Banking and Finance, 7, 141.

Weber, M., J.P. Krahnen & F. Vossmann (1999). Risikomessung im Kreditgeschäft: Eine empirische Analyse bankinterner Ratingverfahren. Zeitschrift für betriebswirtschaftliche Forschung, Sonderheft 41, 117-142.

Wilcox, J. (1973). A prediction of business failure using accounting data. Journal of Accounting Research: Supplement on Empirical Research in Accounting, 163-190.

Williams, R. (2006). Generalized ordered logit/partial proportional odds models for ordinal dependent variables, The Stata Journal, 6(1), 52-82.

Williamson, O.E. (1967). Hierarchical control and optimum firm size. Journal of Political Economy, 75, 123-138.

Zavgren, C.V. (1985). Assessing the Vulnerability to failure of American Industrial Firms: A logistic Analysis. Journal of Business and Finance Accounting, 12(1), 19-45.

Zwick, W., Velicer, R. & Wayne, F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432-442.



  • There are currently no refbacks.

Copyright (c)

ISSN 0394-7947 / eISSN: 2421-5724